Predicting Surgery Duration with Neural Heteroscedastic Regression
نویسندگان
چکیده
Scheduling surgeries is a challenging task due to the fundamental uncertainty of the clinical environment, as well as the risks and costs associated with underand over-booking. We investigate neural regression algorithms to estimate the parameters of surgery case durations, focusing on the issue of heteroscedasticity. We seek to simultaneously estimate the duration of each surgery, as well as a surgery-specific notion of our uncertainty about its duration. Estimating this uncertainty can lead to more nuanced and effective scheduling strategies, as we are able to schedule surgeries more efficiently while allowing an informed and case-specific margin of error. Using surgery records from a large United States health system we demonstrate potential improvements on the order of 20% (in terms of minutes overbooked) compared to current scheduling techniques. Moreover, we demonstrate that surgery durations are indeed heteroscedastic. We show that models that estimate case-specific uncertainty better fit the data (log likelihood). Additionally, we show that the heteroscedastic predictions can more optimally trade off between over and under-booking minutes, especially when idle minutes and scheduling collisions confer disparate costs.
منابع مشابه
Maximum Likelihood Cost Functions for Neural Network Models of Air Quality Data
The prediction of episodes of poor air quality using artificial neural networks is investigated, concentrating on selection of the most appropriate cost function used in training. Different cost functions correspond to different distributional assumptions regarding the data, the appropriate choice depends on whether a forecast of absolute pollutant concentration or prediction of exceedence even...
متن کاملPredicting adverse outcomes of cardiac surgery with the application of artificial neural networks.
Risk-stratification models based on pre-operative patient and disease characteristics are useful for providing individual patients with an insight into the potential risk of complications and mortality, for aiding the clinical decision for surgery vs non-surgical therapy, and for comparing the quality of care between different surgeons or hospitals. Our study aimed to apply artificial neural ne...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملPredicting peak particle velocity by artificial neural networks and multivariate regression analysis - Sarcheshmeh copper mine, Kerman, Iran
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of P...
متن کاملApproximately unbiased estimation of conditional variance in heteroscedastic kernel ridge regression
In this paper we extend a form of kernel ridge regression for data characterised by a heteroscedastic noise process (introduced in Foxall et al. [1]) in order to provide approximately unbiased estimates of the conditional variance of the target distribution. This is achieved by the use of the leave-one-out cross-validation estimate of the conditional mean when fitting the model of the condition...
متن کامل